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Foreword

It is difficult to overemphasize the importance of magnetic resonance techniques in
chemistry. Experimental spectra can usually be successfully interpreted empirically,
but more difficult cases require a prediction based on the electronic structure. In the
last 25 years the calculation of magnetic resonance parameters from first principles
has become a powerful research tool that can significantly enhance the utility of
magnetic resonance techniques when empirical interpretations are insufficient.
This can be crucial even for NMR spectra of organic molecules, where the interpreta-
tions are the simplest and where empirical material has been collected for half a
century. Examples can be found in such diverse fields as the identification of new
fullerenes, the use of calculated chemical shifts as probes of peptide conformation,
and the study of hydrogen bonding. Calculations play an even more important role
in the inorganic and organometallic fields, where empirical interpretations are far
more difficult. The ability to calculate NMR and EPR parameters also increases the
efficacy of electronic structure calculations. Computed energies of different struc-
tures are often too close to allow a unique identification of the stable isomer. Calcu-
lated NMR spectra, however, are often significantly different, so that even simple
calculations can lead to unambiguous identification in such cases.

The unprecedented improvement in the cost-effectiveness ratio of computers
(about six orders of magnitude over the last 20 years), and the continuing fast pace
of development, together with improved computational techniques, will certainly
make the calculation of NMR and EPR parameters more routine and more wide-
spread in the future.

This book, then, is particularly timely, edited as it is by three researchers of the
younger generation who have themselves played an important role in the develop-
ment and application of theoretical techniques. The author list includes many of the
original developers of improved theoretical methods, as well as a number of leaders
in chemical applications, offering a comprehensive coverage of the field.

The calculation of NMR and EPR parameters is less straightforward than the
calculation of most other molecular properties. Understanding the source of these
difficulties led ultimately to their successful solution. In the theory of NMR chemi-
cal shifts, for instance, Hameka has clarified many of the concepts, paving the way
to Ditchfield’s seminal work on Gauge-Independent (later Gauge-Including) Atomic
Orbitals (GIAOs). However, computers and programs in the early seventies were
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Copyright © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 3-527-30779-6

Xl



Xiv

Foreword

not yet ready for calculations on chemically relevant larger molecules. A renaissance
in NMR chemical shift calculations began around a decade later, with the Individual
Gauge for Localized Orbitals (IGLO) method developed by Kutzelnigg and co-
workers, with a parallel development by Hansen and Bouman. It took a few more
years to show that the currently preferred GIAO method can achieve similar compu-
tational efficiency.

The calculation of hyperfine coupling parameters suffers from two major difficul-
ties. Firstly, electron correlation is important, particularly when the direct effect —
due to the spin density of the unpaired orbital — vanishes for reasons of symmetry.
Much of our understanding of this problem is due to Davidson’s analysis. The other
problem is high basis set sensitivity, due to the local nature of the interaction. A
possible solution for Gaussian basis sets was calculated early on by Meyer; alterna-
tive methods are discussed in the present volume.

The calculation of spin-spin coupling constants has a long history but until very
recently has received less attention than NMR shieldings, and therefore a summary
of recent progress in the field is particularly welcome. Another timely topic, both for
chemical shifts and for spin-spin couplings, is the effect of relativity. Because of its
importance in inorganic chemistry, this has been in the forefront of recent theoreti-
cal work, and is well covered in several chapters. The calculation of electric field
gradients, necessary for predicting nuclear quadrupole coupling constants, comple-
ments the calculation of NMR parameters. Some other recent topics of high interest
include the theory of NMR in paramagnetic systems, and the calculation of EPR g-
tensors and zero-field splittings. The interpretation of resonance parameters in
terms of chemical concepts, although necessarily a somewhat arbitrary procedure, is
important for the chemical community; its inclusion here fills a void.

The book covers a wide range of methods, from semi-empirical through density
functional to highly accurate correlated wave functions where vibrational corrections
become important. The chapter on extended systems will no doubt help bridge the
gap between the chemistry and the physics communities in this area. The introduc-
tory chapters, written by distinguished scholars, will be particularly useful for any-
body entering the field. Finally, the application chapters provide broad coverage, and
will be a valuable guide to future work.

In summary, this book promises to become the standard reference for the calcula-
tion of NMR and EPR parameters, and will undoubtedly stimulate research in this
fascinating and important field.

Peter Pulay  Jan. 2004

Department of Chemistry and Biochemistry
Fulbright College of Arts and Sciences
University of Arkansas, Fayetteville, Arkansas
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1
Introduction: The Quantum Chemical Calculation
of NMR and EPR Parameters

Martin Kaupp, Michael Biihl, and Viadimir G. Malkin

It is hard to overestimate the impact of magnetic resonance spectroscopy on modern
chemistry. NMR in particular is one of the most important analytical tools, and
many an area in natural and life sciences has benefited tremendously from it. The
widespread application of NMR and its complement for paramagnetic species, EPR,
has entailed an increasing demand for a reliable theoretical treatment of the under-
lying spectroscopic parameters. Quantum chemical theory has now matured to an
extent that it can significantly enhance the information that can be extracted from
the spectra, thereby widening the interpretative and analytical power of the respec-
tive spectroscopical method.

While early theoretical approaches aimed exclusively at simple, qualitative
models, the past decades have seen increasingly quantitative treatments, in particu-
lar by ab initio and density functional methods. Progress in this field has been tre-
mendous, starting from the pioneering work of Kutzelnigg and others in the 1980s
on chemical shifts. Meanwhile, many more NMR and EPR parameters are in the
focus of quantum chemical study, including nuclear spin—spin coupling, nuclear
quadrupole coupling, EPR hyperfine coupling, electronic g-tensors, zero-field split-
tings, and paramagnetic NMR parameters. Many of the developed quantum chemi-
cal methods have found their way into routine application to questions in chemistry,
biology, and solid-state physics. This has widened the group of researchers involved
in this kind of work. For example, chemical-shift calculations by quantum chemical
methods are not only part of the repertoire of the quantum chemist but are increa-
singly used also by experimentalists to interpret their measurements. The same
holds, e.g., for hyperfine coupling constants in EPR spectroscopy. Other properties,
like spin—spin coupling constants and g-tensors are on their way to becoming more
routine applications. At the same time, further methodological developments widen
the range of possible applications, e.g. by including dynamical or solvent effects, or
relativistic and electron correlation contributions in more and more detail. Last but
not least, the detailed interpretation of the computed MR parameters leads to a
direct link from experiment to the electronic structure of molecules, liquids or sol-
ids.

The variety of methods available has started to become bewildering to the non-ini-
tiated, and even experts on one aspect of MR parameters may not be equally infor-
med about others. There have been reviews on various aspects of the quantum
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1 Introduction: The Quantum Chemical Calculation of NMR and EPR Parameters

chemical calculation of magnetic resonance parameters [1], as well as a few proceed-
ings that have emerged from international conferences dedicated to the subject [2].
The basic aspects are also beginning to find their way into standard textbooks of the-
oretical and computational chemistry [3]. However, to keep an overview of the entire
field has become more and more difficult, and the access to information on a partic-
ular question related to methodological aspects or practical application is no longer
a trivial exercise. There is thus a need for a concise yet reasonably comprehensive
treatment which collects the expertise in the various subfields of the quantum
chemical calculation of MR parameters and which makes this information available
to a wider audience, ranging from theory experts via EPR/NMR experimentalists in
academia and industry to graduate or advanced undergraduate students in chemis-
try and the neighboring disciplines.

It is the purpose of this book to provide such a broad overview. Experts in the var-
ious subfields give concise reviews on the most important aspects of methodology
and on representative applications, in order to provide easy access to the further lite-
rature in the field. Since many of the topics are the subject of active research and
development, the book affords also a snapshot of the state-of-the-art in this multi-
faceted field.

The separation between methodology and applications in the various chapters is
not a complete one. That is, most of the methodological chapters may include some
examples of applications, and the application chapters may contain brief methodolo-
gical sections. In this way, the close connection between theoretical development
and important fields of application becomes clear to the reader. While we have tried
to cover a wide range of topics and subfields, it is impossible to include each and
every aspect of the theory of magnetic resonance. In particular, we have concentra-
ted on quantum chemical methods. Some of the older, more approximate models,
such as ligand field theory are thus not covered to the same extent as the more quan-
titative methodologies developed during the past decades. With small exceptions, we
also deliberately do not attempt to cover the theory of the spectroscopic measure-
ment, which is available in many NMR and EPR textbooks.

The book is organized as follows: Historical developments and fundamentals of
the theory of NMR and EPR parameters are sketched in Chapters 2-5. The method-
ology of nonrelativistic computation of NMR parameters is detailed in Chapters 6—
11, followed by reviews of how to treat effects of thermal motion and solvents on
these parameters (Chapters 12-14). Chapters 15-17 give an overview of the relativi-
stic extensions of the theory of NMR chemical shifts and spin-spin coupling con-
stants, and interpretative tools are scrutinized in Chapters 18 and 19. An account of
the theory of NMR chemical shifts of paramagnetic compounds (Chapter 20) con-
cludes the predominantly methodological aspects of NMR parameters. Chapters 21—
28 are devoted to illustrative applications of NMR computations in various areas of
chemistry. The methodology of calculating EPR parameters is developed in Chapters
29-34, and applications to systems of biological interest are covered in Chapters 35
and 36.
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2

Theory of NMR parameters. From Ramsey to Relativity,
1953 to 1983

Pekka Pyykké

The history of NMR, like any history, has no real beginning.
E. D. Becker, C. L. Fisk and C. L. Khetrapal [1].

2.1
Introduction

In NMR spectroscopy, the observed nuclei are shielded from the full external
magnetic field, B, by the electron shell. Two nuclear magnetic moments can also be
pairwise coupled by a magnetic polarization of the electron system. The connection
between the corresponding NMR spin-spin coupling tensor, J, and shielding tensor,
o of a molecule with its non-relativistic electronic wavefunction was found by Nor-
man F. Ramsey [2-7] in 1950-53. For a review see Ref. 8. During the following three
decades, a fair amount of qualitative understanding and semiempirical results were
accumulated. Even a number of good, by the standard of the time, ab initio calcula-
tions were published as early as in the middle 1960s. This body of work is now often
forgotten and we here try to rescue it from oblivion. Some useful reviews on the sub-
ject are quoted in Table 2.1. We refer to them for full coverage. Only some highlights
or broad trends will be mentioned here. An independent historical account is given
by Hameka [9]. Several recent articles on this general topic can be found in Volumes
7 and 9 of the Encyclopedia of NMR [1].
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Table 2.1.  Some reviews covering the theoretical calculations of NMR parameters in 1953-83.

Year Author Ref. Topic

1960 Karplus [83] Review on 'weak interactions'.

1965 Barfield and Grant [84] Spin-spin coupling.

1965 Hameka [85] Book. Includes magnetic properties.

1966 Lipscomb [86] Chemical shifts.

1966 Musher [87] Theory of chemical shifts.

1967 Davies [88] Magnetic properties of molecules. Book.

1967 Letcher and Van Wazer  [89] *1P shifts.

1967 O'Reilly [90] Chemical shift calculations.

1968 Memory [91] Theory of magnetic-resonance parameters.
Book.

1969 Pyykks [92] Spin—spin coupling until 1968.

1971 Emsley and Phillips [93] Fluorine chemical shifts.

1971 Murrell [94] Spin—spin coupling.

1972-76  Grinter [95] Spin—spin coupling®.

1972 Lipscomb [38] Review. Includes chemical shifts.

1972-74  Raynes [96] Nuclear shielding®.

1974 Das [97] Relativistic theory of electrons. Includes solid-
state nuclear spin—spin coupling. Book.

1974 Ditchfield and Ellis (98] 13C shifts.

1975 Mallion [99] Nuclear shielding®.

1976 Ditchfield [100] Nuclear shielding®.

1976 Ellis and Ditchfield [101] 13C coupling constants.

1977 Kowalewski [102] Spin-spin coupling 1969-75.

1977-78 Pachler [103] Nuclear spin-spin coupling®.

1978 Raynes [104] Theoretical and physical aspects of nuclear
shielding®.

1978 Webb [105] Theory of NMR parameters.

1979-80  Pachler and Chalmers  [106] Nuclear spin—spin coupling®.

1979 Raynes [107] Theoretical and physical aspects of nuclear
shielding®.

1980 Ando and Asakura [108] Shielding and stereochemistry of synthetic
polymers.

1980-93  Jameson et al. [109] Shieldings®.
Theoretical, physical and inorganic aspects.

1982 Kowalewski [110,111]  Spin—spin coupling 1977-81.

1983 Ando and Webb [112] Theory of NMR parameters. Book.

1983 Kowalewski [113] Spin—spin coupling®.

1986 Jameson and Osten [65] Isotope effects on shielding.

1987 Jameson [114] Spin—spin coupling.

1987 Jameson and Mason [115] Chemical shifts.

a Annual reviews, mostly June to May.



2.1 Introduction

22
Spin—Spin Coupling

2.2.1
Successive Approximations

After Ramsey’s theories, the next step was taken by McConnell [10], who related
long-distance "] (AB) coupling constants to the bond-order between atoms A and B.
As in Ramsey’s own numerical estimates, an effective-energy-denominator, AE, and
the closure approximation were used for the second-order terms:

[mnl 1 (2.1)

On the semiempirical side, valence bond (VB) models were popular for a while. The
Karplus relation between three-bond coupling constants, *J(HH) and the dihedral
angle, ¢, was one classical VB result. The original example [11] was ethane; the
applicability of the result was discussed later by Karplus [12]. The influence of the
hybridization and the s-character on 'J(CH) and *J(HH) coupling constants was
studied by Juan and Gutowsky [13] as a function of the substituents. Similarly, Kar-
plus and Grant [14] related the J to hybridization and charge distribution in chemi-
cal bonds.

Pople and Santry [15] avoided the average energy approximation at semiempirical
level by introducing, instead of the bond-order, the quantity

0CC unocc

-1
Tpp = 42 Z (E; — Ej)  CiaCrCiaCpp. (2.2)
T

Here I and ] are molecular orbitals while A and B are atoms, or s-type basis orbitals
on them. This level is called ‘sum-over-states’ (SOS) perturbation theory.

222
FPT

Instead of perturbation theory or response theory, such as ‘coupled-Hartree—Fock’
(CHF), one can use a numerical approach by introducing finite values for one
nuclear moment. This ‘finite perturbation theory’ (FPT) approach was first used at
INDO (Intermediate neglect of differential overlap) level for the Fermi-contact part
of J by Pople et al. [16-18]. A popular textbook on this level of theory was that by
Pople and Beveridge [19]. A comparison between SOS and FPT for | of H; was car-
ried out by Ditchfield et al. [20].

9
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223
Ab Initio Calculations

The available wavefunctions for H, were used for J calculations by Ishiguro [21] and
by Das and Bersohn [22]. Kato and Saika [23] calculated the | of the HF molecule at
a Hartree-Fock SOS level. For further examples, see the reviews in Tab. 2.1 and
Tab. 2.2.

Table 2.2. Some early ab initio results. Shieldings,

o, in ppm. Coupling constants, J, in Hz. For experimental
results, and the convergence of modern calculations
towards them, see Helgaker et al. [116].

Molecule Property Year Value Ref.
HF o (F) 1964 404.65 36
1964 378.1 37
1974 411.7 39
1975 400.34 76
410.6*
o (H) 1964 28.11 36
1964 27.48 37
1974 30.61 39
1975 27.00 76
28.5(2)*
J(HF) 1967 621 23
500(20)"
CIF o (F) 1972 700"
667"

a Experimental value.
b See Table 5.12. of Ref. [38].

2.2.4
Relativistic Effects

Relativistic effects, especially for s orbitals if their contribution is dominant, can be
most simply estimated through multiplicative correction factors for the atomic
magnetic dipole hyperfine matrix elements (see [24, 25] and references therein). It
should be emphasized that the changes are large: Relativistic effects increase the s-
orbital matrix element by a factor of roughly 3 for a heavy element (Z > 80). For
J(HgHg) coupling constants, the relativistic increase is an order of magnitude.

A more fundamental way is to formulate a relativistic analog of Ramsey’s theory
by introducing the magnetic vector potentials

Xr
Au() zszé;ggé', (2.3)
A



2.2.3 Ab Initio Calculations

for the two nuclei A and B in the perturbation
H =ca- (A, +Ap), (2.4)

in second-order perturbation theory with four-component (Dirac) wavefunctions,
and by selecting the terms, bilinear in 4, and uy [26]. Here @ is a Dirac matrix. The
implementations in that paper consisted of a simple molecular orbital model only,
but gave already the prediction that relativistic effects should increase the relative
anisotropy of the J. A later SOS implementation by Pyykké and Wiesenfeld [27],
combining atomic Dirac—Fock hyperfine integrals and relativistic extended Hiickel
(REX) molecular orbitals, localized this increase to a phase-factor difference between
s1/2 and py, orbitals. While the s—s combination gives a diagonal (K, K, K), the s; ;-
P12 combination gives a diagonal (K, -K, -K). The same paper gave insight to prob-
lems, like the decrease and sign change of ! J(EH) in H,E molecules, E = O-Te. Fur-
thermore, the paper led to a partial revision of the symmetry rules [28] for J-tensors
in molecules with various symmetries by Buckingham et al. [29]. If nothing else
holds in a rough semiempirical calculation, symmetry will.

225
Self-Coupling Effects

For s-electrons, a relativistic treatment is imperative [30] and the finite result ari-
ses from the finite nuclear size. For non-spherical nuclear sites, a second-order
magnetic hyperfine interaction gives a small ‘pseudoquadrupole’ interaction
[31-33].

23
Chemical Shifts

2.3.1
Ab Initio Calculations

What would now be known as ‘coupled Hartree-Fock’ or response methods, were
effectively introduced to ab initio calculations by the group of Lipscomb [34-36].
Induced current densities were plotted. The results could be contrasted to the
uncoupled ones by Karplus and Kolker [37], especially on the spin—rotation constant.
The diatomic molecules H,, Liy, N, F,, LiH, HF and LiF were treated using a Slater
basis. Although GIAOs (see Section 2.4) were not yet used, these papers are still
worth quoting. For a review, see Lipscomb [38]. Ditchfield [39] reported GTO results
for a large data set including polyatomic molecules. For some examples on the
results, compared to experiment or modern calculations, see Tab. 2.2. A remarkable
example is the large upfield shift of F in the CIF molecule, attributed to a small

Tiomo — OLumo 82p [40].

1
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23.2
Semiempirical Models

Jameson and Gutowsky [41] related the chemical shift ranges of elements to their
<1/r*> expectation values. Simple orbital models gave insight to the shifts of acety-
lene, simple hydrides [42, 43], carbonyls [44] and other 3C shifts [45]. Karplus and
Das [46] discussed '°F shifts in fluorobenzenes in terms of localized contributions
and related o to the electric field gradient, g.

233
Crystal-Field-Type Theories

Griffith and Orgel [47] related the NMR shifts of the cobaltic, d® S=0 **Co signals to
the crystal-field splitting, A. Buckingham and Stephens [48, 49] developed a theory

for the temperature-independent paramagnetic shifts of protons in transition-metal
hydrides.

234
Heavy-Atom Shifts

A heavy halogen, X, can induce large upfield shifts on NMR nuclei, bound to them.
Some examples are molecules like "HX or X'*CHj3. These shifts are known as heavy-
atom chemical shifts. Smaller shifts of either sign can occur further out. The first
person to realize that this effect was due to spin-orbit effects, was Nakagawa [50],
who used third-order perturbation theory. The work appeared in Japanese in a
domestic conference report. The first papers in English [51, 52] also used a third-
order-PT approach at semiempirical level. The entire series of halogen-substituted
methanes was studied by Cheremisin and Schastnev [53]. A notable example was
the observed 13C shift of 290 ppm (from methane) in Cl,. Volodicheva and Rebane
[54] discussed the HX series. The semiquantitative insight from these papers
remains valid. No ab initio (nor DFT) studies on this topic appeared during the peri-
od considered.

235
Lanthanide Shift Reagents

These were introduced experimentally in 1969 by Hinckley (see Ref. [1], pp. 41-43).
A theory was worked out for the contact part by Golding [55] and for the pseudo-
contact part by Bleaney [56]. A more general form of the latter theory, with explicit
sums over the full crystal-field levels at a given temperature, was published by Gol-
ding and Pyykks [57].



2.4 General Aspects
2.3.6
Relativistic Theory

At Dirac level, one can again introduce the sum of the two magnetic vector poten-
tials, the first term now coming from the external magnetic field:

A(r):ler+”

XT
2 7

(2.5)
In second-order perturbation theory, the energy terms bilinear in B and u will then
correspond to the NMR shielding. This idea was published in 1983 independently
by Pyper [58], Pyykké [59] and Zhang and Webb [60]. It was already noted that the
‘diamagnetic’ shielding term of Ramsey arises approximately from the positron-like
intermediate states. For the shielding, this is a large term.

2.3.7
Absolute Shielding Scales

A connection between the paramagnetic shielding term and the spin-rotation con-
stants was found by Ramsey [61]. For a later review, see Flygare [62] and further ref-
erences in Ref. [8].

23.8
Symmetry of the Shielding Tensor

The rules, connecting the site symmetry of the NMR nucleus to the number of inde-
pendent components of the ¢ tensor, were published by Buckingham and Malm
[63].

2.3.9
Isotope Shifts in the Shielding

These were first discussed by Gutowsky [64]. For a review, see Jameson and Osten
[65].

2.4
General Aspects

2.4.1
Gauge-Including Atomic Orbitals

These are also called gauge-independent atomic orbitals and were originally sugge-
sted by London [66] in a theory of magnetic susceptibilities. He quotes large aniso-
tropies for bismuth, graphite and aromatic compounds. These orbitals were introdu-
ced for NMR shifts by Pople [42, 43]. Their first ab initio applications on an NMR

13
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shift seems to be the H, work by Hameka [67]. For later work, see Zeroka and
Hameka [68]. STOs were still used. The names ‘gauge invariant atomic orbital’ [69]
or ‘eichinvariante Atomfunktion’ [70] were used in susceptibility calculations in
1959 by him. The acronym GIAO was introduced in 1962 by Hameka [71]. Pople
[44] suggested in 1962 the name ‘gauge-dependent atomic orbital’.

For the shielding problem (or susceptibilities), the question is, from which gauge
origin one should take the first term in Eq. (2.55). If one uses a basis of GIAOs,

ie

%, = $, exp(— 1A} 1), (2.6)
for each atomic orbital ¢, at centre i, with the A; counted from a common origin,
the results will then be independent of that origin. This requirement will exist in
relativistic and non-relativistic theories alike.

As the partition of the shielding into diamagnetic and paramagnetic terms
depends on the gauge origin, it is in certain cases possible to reduce the latter one to
zero, as suggested by Rebane [72]. It can be emphasized that their sum is constant
at the basis-set limit [73] in the CHF approximation (called by physicists the ‘ran-
dom-phase approximation’, RPA) [74, 75].

The first devices for an efficient implementation of the GIAO ideas appeared at
the end of the title period. Following earlier discussions on optimal gauge origin
[76, 77], Kutzelnigg [78] introduced the ‘individual gauge for localized orbitals’
(IGLO) approach at CHF level. It was applied on simple polyatomic molecules using
a Gaussian basis [79]. In retrospect the faster basis-set convergence will be an even
greater advance than the actual gauge invariance.

When calculating spin—spin-coupling tensors, a logical gauge origin for each
hyperfine matrix element is the nucleus in question and this has so far been consi-
dered to be an adequate choice.

242
Basis Sets

The earliest ab initio calculations of NMR parameters were performed using Sla-
ter orbitals, which may partially explain their success. Following the general move
towards Gaussian orbitals, these orbitals were also adopted for the present pur-
pose. A detailed study on the STO-nG expansions of an STO in Gaussians for the
present properties was reported by Ditchfield et al. [39, 80]. Among the earliest
GTO calculations were those by Lazzeretti for both ¢ [81] and J [82].

243
Note on Dimensions

For historical continuity, we have used Gauss-cgs units. For their conversion to SI
units, see Ref. [8].



25
From 1983 to 2003

References

The developments since 1983 and the current situation will be reviewed in the chap-

ters in this book.
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3
Historical Aspects of EPR Parameter Calculations

Frank Neese and Markéta L. Munzarovd

The field of theoretical calculations of EPR spin-Hamiltonian parameters was devel-
oped in close correspondence with the progress in the experimental technique.
Indeed, many of the scientists who made seminal early contributions to the theory
of EPR parameters were also involved in experimental studies. It is therefore neces-
sary to briefly describe the history of the EPR method itself before it is possible to
understand how the theoretical approaches evolved. The first magnetic resonance
experiment was carried out by Zavoisky in Russia in 1945 [1]. At this time he ob-
served resonance lines from CuCl,"2H,0 at a frequency of 133 MHz! Intellectually,
this experiment might have been expected for about 10 years based on the studies of
Van Vleck in Oxford [2] on molecular magnetism and the group led by Gorter [3] in
the Netherlands. However, rapid experimental progress only became possible after
World War II due to the development of microwave technology in military based
laboratories. In the following years EPR spectroscopy progressed quickly but was a
domain of physicists studying transition metal ions in crystals. It is therefore not
surprising that the first observation of hyperfine structure in 1949 by Penrose [4]
was on a complex of the Cu(Il) ion which splits an EPR resonance into four lines
due to its nuclear spin of I=3/2. In the early 1950s organic chemists studying aroma-
tic m-radicals became interested in EPR. In 1953 Weissman [5] observed for the first
time the EPR spectrum of such a radical and correctly attributed the rich structure
observed to the proton hyperfine coupling (HFC) (the first inorganic, transition
metal free radical EPR was also seen by Weissman and co-workers in (SOj3),(NO)*
in 1952 [6]). In 1953 an important observation was made by Owen and Stevens who
for the first time observed the hyperfine structure due to the coordinating ligands in
IrCls>" [7]. Subsequently EPR evolved in basically three communities which were
studying organic radicals and biradicals, open shell transition metal ions, and small
inorganic radicals in the gas phase or by matrix isolation techniques respectively.
Between the years 1960 and 1980 continuous wave (CW) EPR was developed into a
routine technique for the study of paramagnetic molecules with commercial spec-
trometers being available from several companies. The first spin echo in EPR was
observed by Blume in 1958 [8] and in the 1960s pulse techniques were developed
mainly in the Bell laboratories in the group of Mims [9-13]. However, it was not
until the 1980s that the electronics became sufficiently fast and sufficiently cheap
for the pulse techniques to become more widespread (for reviews see [14, 15]).
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Already in 1956 the first electron-nuclear double resonance experiment (ENDOR)
was conducted by Feher [16, 17] but this technique, despite its considerable power,
also took a long time to become more conventionally used. The main technological
advances, starting in the early 1980s, were (i) the extensive development of pulse
techniques which opened the way for the first 2D-EPR experiment in 1986 [18] and
(ii) the construction of spectrometers which operated at higher and higher micro-
wave frequencies and consequently also higher magnetic fields [19-22]. Today these
techniques are still improving at a rather rapid pace. Due to these developments it
became possible to record EPR spectra with unprecedented resolution. First, one
can now sensitively and accurately measure very small isotropic and anisotropic
HFCs as well as quadrupole couplings of magnetic nuclei which are very weakly
coupled to the electronic spin. Secondly, it is possible to observe resonances from
systems with much larger interactions (zero-field splittings (ZFSs), Kramers and
non-Kramers systems, exchange coupled systems) which previously could not be
studied by EPR techniques. Thirdly, due to the emergence of high-field spectrome-
ters, g-tensors can be measured to much higher accuracy than possible previously.
Together with these technological advances the systems studied by EPR techniques
became ever more complex. In biochemistry, radicals in low-symmetry protein envi-
ronments with specific hydrogen bonding interactions, mono- and polynuclear
metal active sites in metalloproteins, and shortlived charge-separated states in pho-
tosynthesis [23] are all accessible to detailed EPR studies nowadays. In solid state
and materials sciences paramagnetic defects and metals or radicals in zeolites cur-
rently receive much attention. All these developments now require theoreticians to
catch up with the technological developments and provide new quantum chemical
methods which make it possible to develop the information content of EPR spectra
to their full potential.

The small interactions observed in EPR spectra (<~1-25 cm™") have been theoreti-
cally understood since the early days of quantum mechanics, long before the inven-
tion of the EPR technique itself. Indeed, the observation of hyperfine structure in
atomic spectra led Pauli in 1924 to postulate the existence of a spin angular momen-
tum [24] based on the famous Stern—Gerlach experiment [25], of which EPR can be
considered a fascinating extension. The spin also came as a natural consequence
from the Dirac equation which describes the relativistic motion of a single electron
[26]. A generalization to more than one electron was developed by Breit [27-29]. In
1957 Bethe and Salpeter wrote an influential monograph that summarized almost
all of the microscopic terms in the Hamiltonian that are necessary to understand
the phenomena observed in EPR spectra [30]. An important addition was made by
Fermi in 1930 who found the important ‘Fermi contact interaction’ in the spectra of
alkali metals with a single valence electron [31]. Although Fermi started his deriva-
tion from the Dirac equation, the relativistic nature of the contact term is under dis-
pute since the HFC can be obtained from classical arguments if a magnetic moment
for the electron is assumed [32]. A deep discussion has been given by Kutzelnigg
who concludes that the isotropic HFC is not an intrinsically relativistic effect and
that the o-function term in the Hamiltonian arises as an artifact of trying to use first
order perturbation theory in terms of two component spinors instead of the four
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component Dirac spinors to describe the interaction [33]. In addition, it is not widely
known that the delta-function notation in the Fermi contact operator was actually
introduced much later by Abragam and Pryce [34, 35]. Furthermore, the 1930s wit-
nessed the development of two theoretical frameworks that later served as a basis
for the understanding of EPR spectra for many decades. These two theories are the
Hiickel molecular orbital (HMO) theory of organic m-systems published in 1937 [36]
and the crystal field theory (CFT) of transition metal electronic structure developed
by Bethe [37] and Van Vleck [38] in the early 1930s and brought into chemistry by
Hartmann and co-workers in the early 1950s [39-41].

With the emergence of EPR experiments in 1945 it quickly became evident that
the route from the fundamental theory to the actual data was too long, especially if
complicated open shell ions in low symmetry environments were studied. A simp-
ler, less fundamental but phenomenologically correct description of the EPR experi-
ment was therefore urgently needed in order to reduce the complexity of the data
analysis. The emergence of such a method, the effective spin-Hamiltonian (SH), in
the early 1950s must be considered a major intellectual achievement with far rea-
ching consequences for the development of EPR and NMR spectroscopy. The princi-
pal idea of the SH is to write down an effective Hamiltonian that only contains spin
degrees of freedom together with a few well defined numerical parameters (SH pa-
rameters) that are obtained from fitting to the experimental data. Since the spin-
only Schrodinger equation is easily solved exactly (or at least numerically with a
computer) the experimentalists could now focus their efforts on designing new
experiments and plan, describe and analyze them in the framework of the effective
SH. Thus, recourse to the much more complicated underlying physics is not neces-
sary. It is not even necessary that the spin entering the SH is the “true” spin of the
system. For example, in Kramers systems with large ZFSs one can describe the indi-
vidual Kramer’s doublets by an effective S=1/2 SH. The spin in the SH is therefore
usually referred to as the “fictitious spin” and the important concept involved in SHs
is that they describe the properties of a reasonably well isolated set of states correctly
(most frequently an orbitally non-degenerate spin-multiplet with 2S+1 components).
However, spin-only type problems were considered long before the formulation of
the SH concept. Most prominently, Breit and Rabi in 1931 obtained a closed form
solution of the eigenvalues and eigenvectors of a spin system with an isotropic g-val-
ue and an isotropic hyperfine tensor [42] (for more details on the SH concept see
Chapter 4 by Lushington).

Thus, in the early 1950s the field of ‘theoretical EPR spectroscopy’ was reduced to
the prediction of a small set of SH parameters. Indeed, Griffith wrote in his famous
book “The Spin Hamiltonian is a convenient resting place during the long trek from
fundamental theory to the squiggles of an oscilloscope” and it is “the last outpost in
our land of theoretical physics” [43]. In the early 1950s it was impossible to seriously
consider the solution of the many electron Born—Oppenheimer (BO) problem to-
gether with the many small (mainly relativistic) effects that are necessary to under-
stand EPR spectroscopy. It is therefore evident that the first formulation of the theo-
ries for SH parameters had to be formulated in the languages of the theories appli-
cable to the classes of substances of interest that were available at the time. Conse-
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quently, the first development of the SH by Pryce [44, 45] and Abragam and Pryce
[34, 35, 46, 47] used perturbation theory in the framework of CFT. A lucid theoretical
study is due to Griffith and was published in 1960, some ten years after the intro-
duction of the SH [48]. These workers already arrived at all the terms that are consi-
dered essential for the parametrization of EPR experiments today:

1. The g-matrix which parametrizes the Zeeman splittings due to the interaction
of the total electronic magnetic dipole moment with an external magnetic
field (0-10 cm™).

2. The hyperfine tensor which parametrizes the interactions between the total
electronic spin and the nuclear spins (< 1 cm™).

3. The zero-field splitting which parametrizes the interactions that lift the dege-
neracy of the 2S+1 component